

Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data

Dehai Min, Nan Hu, Rihui Jin, Nuo Lin, Jiaoyan Chen, Yongrui Chen, Yu Li, Guilin Qi, Yun Li, Nijun Li, Qianren Wang

Introduction

- Enhancing LLMs in Domain-Specific Question Answering
 - Domain-Specific Fine-Tuning (DSFT)
 - Retrieval-Augmented Generation (RAG)
- Real-World Data Consists of Hybrid Data (Text and Tables)

Common in : Scientific Literature , Medical Reports, etc.

Tables alongside text provide :

- Supplementary or complementary information
- Enhancing the understanding of the content

Domain Documents

Current Methods and Their Drawbacks

- Method 1 : Flattening Tables (Concatenates table cells row by row)
 Results in :
 - > The loss of structural information
 - Disrupts the informational links between cells
 - > Introduces the non-natural language text

				Assists	Points	Tota	l reboun	ds St	teals					
	Al Hor	rford		5	15		7		3					
	Isaiah '	Thomas	\$		27									
	Marcu	s Smart		7	15									
	Carme	lo Anth	ony		29									
/	Kristar	os Porzi	ngis		22		12							
N .	Derricl	k Rose			25									
	<\$>			<\$>	Assists	<\$>	Points	<5>	Total	Rebounds	<5>	Steals	<\$>	•••
					11001000		1 Onits		rotur			Stears		
		Demist	Daga		25								102	
	\ \$>	Derrick	Kose	<\$>	25	<\$>		<5>			<\$>		<\$>	

Current Methods and Their Drawbacks

- Method 2 : Mapping Text and Tables to Different Vector Spaces Results in :
 - > Increases the complexity of system (needs multimodal models or multiple models)
 - > Disrupts the semantic connection between the two types of data (Text and Tables)

Table-to-Text Generation

- Generates natural language statements that faithfully describe the information in the provided table
- Four representative table-to-text strategies:
 - □ 1. Markdown format.
 - □ 2. Template serialization: a set of templates designed.
 - □ 3. TPLM-based method: fine-tuning Traditional PLM, like BART, on specific task datasets
 - □ 4. LLM-based method: ChatGPT, one-shot in-context learning setting.

Frenquency Band	Channel Bandwidth	Peak Data Rate
6 GHz	320 MHz	11.53 Gbps
5 GHz	160 MHz	5.765 Gbps
2.4 GHz	40 MHz	1.376 Gbps

Generation

The 6 GHz band offers a channel bandwidth of 320 MHz. It can reach a peak data rate of 11.53 Gbps (gigabits per second). The 5 GHz band has a channel bandwidth of 160 MHz. Its peak data rate is 5.765 Gbps ...

Advantages of Using Table-to-Text Generation

- Transforms hybrid data into a unified natural language representation
 - 1. Simplifies hybrid data scenarios into pure text scenarios
 - 2. Seamlessly integrates with any SOTA LLMs (which typically focus on text understanding and processing)
 - 3. Pure text format is easy for training domain-specific LLMs
- Preserves the semantic connections between the data
 - 1. Preserves the integrity of document content
 - \rightarrow beneficial for the model to learn a complete knowledge by finetune
 - 2. Facilitates information retrieval in RAG systems

Research Gap

• The lack of comparative analysis on how different table-to-text methods affect the performance of domain-specific QA systems.

We address this research gap:

- Step 1: Innovatively integrates table-to-text generation into the LLM-based Domain QA framework
- Step 2: Conducts extensive experiments with different table-to-text methods on two types of QA systems

Building Domain Corpora with Table-to-text

Tables

Four Different Table-to-Text Generation Methods

8

NAACL 2024

Building LLM-based QA Systems with Domain Corpora

- System1 DSFT:
 - Step 1: Incrementally pre-train the LLM on the domain corpus
 - Step 2: Instruction tuning on the QA task

System 2 - RAG:

- LangChain framework
- Dense Passage Retriever (DPR) method for information retrieval

(a) Domain-Specific Fine-Tuning QA system

(b) Retrieval-Augmented Generation QA system

Dataset

ICT-DATA:

- Real-world industry hybrid dataset, English.
- Based on 170 technical documents related to ICT products
- o 178 million words, 6GB text storage size
- Table data accounts for about 18% of the total word count

ICTQA:

- 9k questions with long-form answers
- Test set: 500 questions, whose answers involve knowledge from both tables and text.

ICT: Information and Communication Technology

Evaluation Metrics

Automated Evaluation:

- GPT-4 as an evaluator
- In-context learning: one demonstration
- Range: 0 to 5, discrete values. larger denotes better
- Based on helpfulness and similarity to the golden answer

Human Evaluation:

- 3 evaluators with domain knowledge
- Same scoring criteria with GPT-4

NAACL 2024

Experimental Setup

DSFT Paradigm:

- Meta's OPT (1.3B to 13B)
- Llama2-base (7B, 13B)
- QLoRA for pre-training and instruction fine-tuning

RAG Paradigm:

- Llama2-chat (7B, 13B, and 70B)
- o GPT-3.5-turbo
- BGE model for DPR embedding
- Top-3 relevant text chunks based on similarity

Fair Comparison: the same settings on four different corpora.

Metrics	Table-to-Text]	Domain-Spee	cific Fine-Tu	Retrieval-Augmented Generation					
	Method	OPT-1.3B	OPT-2.7B	OPT-6.7B	OPT-13B	Llama2-7B	Llama2-13B	GPT-3.5-turbo	Llama2-7B	Llama2-13B	Llama2-70B
	Markdown	2.05	2.41	2.38	2.51	2.82	3.05	3.29	3.72	3.98	<u>3.94</u>
Human Eval.	Template	2.04	2.40	2.26	2.47	2.82	3.04	<u>3.36</u>	3.44	3.96	3.76
	TPLM-based	<u>2.12</u>	2.43	<u>2.43</u>	<u>2.58</u>	3.20	<u>3.13</u>	3.26	3.27	3.92	3.64
	LLM-based	2.18	2.57	2.51	2.62	<u>2.96</u>	3.19	3.62	<u>3.71</u>	4.26	4.09
	RSD(%)	2.80	3.40	5.00	3.00	7.60	3.00	7.20	9.00	6.80	9.00
	Markdown	1.74	2.16	2.27	2.25	2.7	3.06	3.28	3.66	<u>3.67</u>	3.74
GPT-4 Eval.	Template	1.81	2.22	2.39	2.34	2.84	3.08	3.27	3.06	3.38	3.37
	TPLM-based	2.33	2.46	<u>2.45</u>	2.53	3.20	3.19	<u>3.28</u>	2.9	3.41	3.30
	LLM-based	2.57	2.69	2.73	2.86	<u>3.06</u>	3.30	3.64	<u>3.59</u>	3.69	<u>3.54</u>
	RSD(%)	16.60	10.60	9.20	12.20	10.00	4.80	7.40	15.20	6.20	8.80

Relative Score Differences (RSD):

- 2.8% to 9.0% in human evaluation
- 4.8% to 16% in GPT4 evaluation

significantly impact the performance of systems

Performs well in DSFT paradigm:

- LLM-based method
- TPLM-based method

Performs well in RAG paradigm:

- LLM-based method
- Markdown format (surprise!)

Comparison of human evaluation scores between QA models using different Table-to-Text methods.

'A vs. B win' indicates the percentage of test set instances where Model A's score surpasses Model B's.

RQ: What are the potential reasons for their different performances?

In DSFT Paradigm:

Freq (k)	$C_1 \cdot$ Markdown	C_2 · Template	$C_3 \cdot \mathbf{TPLM}$ -based	$C_4 \cdot \mathbf{LLM}$ -based
Term	821	1040	2358	2254
Verbs	313	315	682	1207

Absolute frequency of verbs and terms contained in the corpora C_i generated by different methods.

higher frequency of domain-specific terms and verbs leads to better system performance.

- *LM-based methods tend to supplement the domain entities as subjects/objects.
- Template methods use more pronouns, and monotonous predicates.
- Markdown format only retains the original content in the tables.

RQ: What are the potential reasons for their different performances?

Some practical suggestions for choosing table-to-text methods

Ready-to-use tips

DSFT Paradigm:

- LLM-based method (Pros: best performance; Cons: GPU/API cost, Data leakage risks)
- TPLM-based(Can well-tuned on this task. A good alternative for LLM)

RAG Paradigm:

- LLM-based method
 - o best performance
- Markdown format (viable substitute)
 - ✓ easy-to-use
 - ✓ GPU-Free

Freq (Avg.)	Markdown	Template	TPLM-based	LLM-based
Text Len	998	1259	1138	897

The average length of text generated by different methods for each table.

More Concise Text

Thank You

Dehai Min

Master Student

Southeast University & Monash University

Homepage: <u>https://zhishanq.github.io/</u>