

Can ChatGPT Replace Traditional KBQA Models? An In-depth Analysis of the Question Answering Performance of the GPT LLM Family

Yiming Tan*, Dehai Min*, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, Guilin Qi

Southeast University

11.7.2023

Outline

- 1. Background and research objectives
- 2. Previous works and findings
- 3. The Q&A evaluation framework
- 4. Experiments and findings
- 5. Conclusion

Large language models like GPT family contain vast amounts of knowledge and support answering questions posed by users using their own included knowledge.

Question: <u>Can large language models replace the traditional KBQA model ?</u>

Research objective: To evaluate the effectiveness of large language models, represented by the <u>GPT family</u>, when used as <u>self-referential knowledge graphs</u> in answering <u>complex open-domain questions</u>.

Previous findings:

- ChatGPT tends to be a lazy reasoner and performs poorly in inductive reasoning tasks. (Bang et. al, A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity, 2023)
- ChatGPT exhibits lower consistency in its question-answering results compared to traditional KBQA models. (Omar et. al, Chatgpt versus traditional question answering for knowledge graphs: Current status and future directions towards knowledge graph chatbots, 2023)

Previous work HELM **Benchmark Scenarios Metrics** Output Input What Natural Task Who When Language perturbation measure Questions Natural XSUM Question Wikipedia Web users 2018 English Accuracy answering **Questions** None Exact Match IMDB Review Gender F1 IMDB Robustness Movie Summari Women 2011 Finnish MS MARCO ROUGE Product zation Men Туро CivilComments Race Toxicity Sentiment Black Fairness 2022 Chinese ? Toxicity News analysis White WikiText-103 Gender Social Age Efficiency WebNLG Dialect Children Pre-Information Twitter Idealized Swahili ? ANLI retrieval Reddit Elderly Internet Denoised ÷ ; ÷ ÷ ÷ ÷

(Liang et.al, Holistic Evaluation of Language Models, 2022)

Knowledge Science and Engineering Laboratory

.

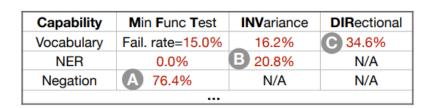
CheckList^[4] Black-box testing

- 1. Minimum Functionality Test
 - Testing the model's various fundamental
- 2. INVariance Test

- Making multiple input modifications while keeping the main features unchanged, observe if the model can maintain output consistency.

3. DIRectional Expectation Test

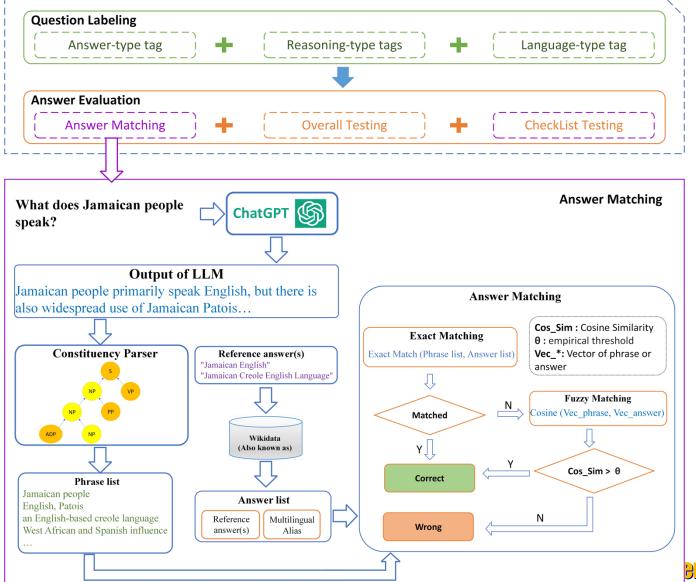
- Introducing expected input modifications to observe whether the model produces the anticipated results.



Test case	Expected	Predicted	Pass?
A Testing Negation with MFT	abels: negati	ve, positive,	neutral
Template: I {NEGATION} {POS_VERB	} the {TH	HING}.	
I can't say I recommend the food.	neg	pos	X
I didn't love the flight.	neg	neutral	X
	Failu	ure rate = 7	76.4%
B Testing NER with <i>INV</i> Same pred.	(inv) after re	emovals / ad	ditions
@AmericanAir thank you we got on a different flight to [Chicago → Dallas].	inv	os neutral	×
@VirginAmerica I can't lose my luggage, moving to [Brazil → Turkey] soon, ugh.	inv	(neutral neg	x
•••			
	Failu	ure rate = 2	20.8%
C Testing Vocabulary with DIR Sen	timent mono	tonic decrea	sing (↓)
@AmericanAir service wasn't great. You are lame.	Ļ	(neg neutral	×
@JetBlue why won't YOU help them?! Ugh. I dread you.	Ţ	neg neutral	x
	Failu	ure rate = 3	34.6%

(Ribeiro et. al, Beyond Accuracy: Behavioral Testing of NLP models with CheckList, 2020)

The Q&A evaluation framework



Question Labeling:

The three labels "Answer-Type," "Reasoning-Type," and "Language-Type" are set to uniformly describe the characteristics of questions originating from different KBQA data sets.

Answer Evaluation:

Answer Matching:

Exact matching (EM) + Fuzzy matching

Overall Testing: Assessment of QA Performance for GPT LLM.

CheckList Testing: Testing the Consistency and Robustness of GPT LLM as a Question-Answering System

ering Laboratory

1. Source of feature labels:

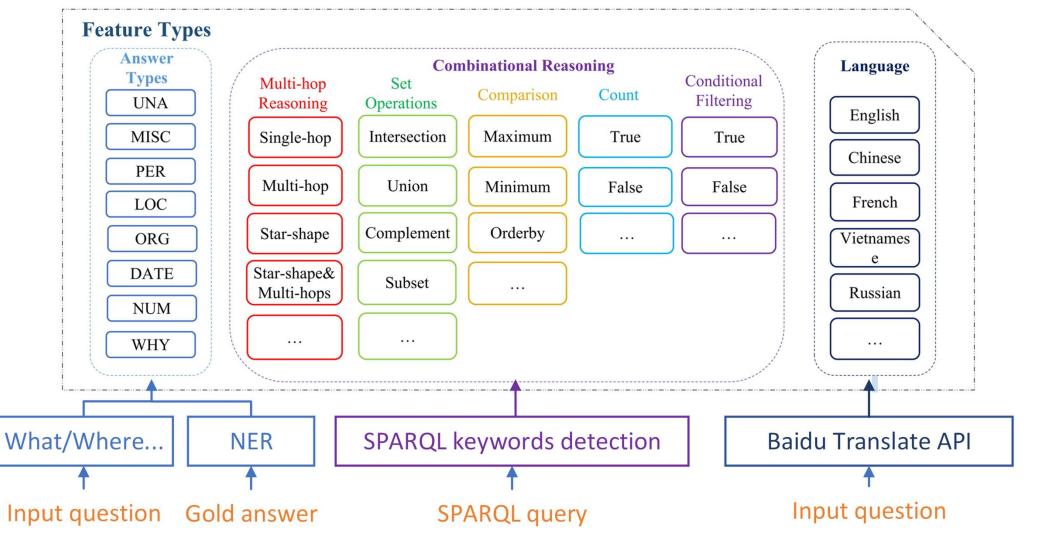
Answer Type: From answer types in existing KBQA datasets.

Reasoning Type: From inference type labels in existing KBQA datasets and keywords involved in SPARQL queries.

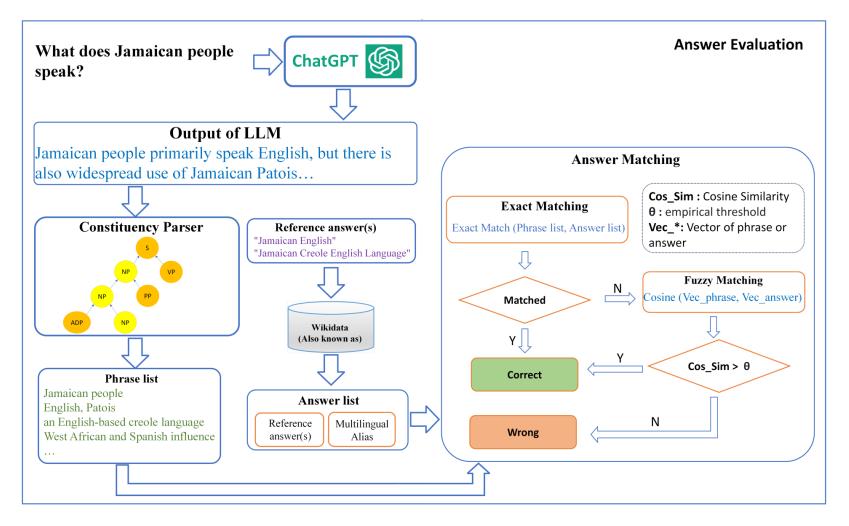
Language Type : From language labels in existing multilingual KBQA datasets.

 Table 1. The feature-driven question tags defined in this paper.

Answer type	Description
MISC	The answer to the question is the miscellaneous fact de-
	fined by the named entity recognition task.
PER	The answer to the question is the name of a person.
LOC	The answer to the question is a location.
WHY	The answer explains the reasons for the facts mentioned
	in the question.
DATE	The answer to the question is a date or time.
NUM	The answer to the question is a number.
Boolean	The answer to the question is yes or no.
ORG	The answer to the question is the name of a organization.
UNA	The input question is unable to answer.
Reasoning type	Description
SetOperation	The process of obtaining answers involves set operations.
Filter	The answer is obtained through condition filtering.
Counting	The process of obtaining an answer involves counting op-
	erations.
Comparative	The answer needs to be obtained by comparing or sorting
	numerical values.
Single-hop	Answering questions requires a single-hop Reasoning.
Multi-hop	Answering questions requires multi-hop Reasoning.
Star-shape	The reasoning graph corresponding to inputting question
_	is star-shape.



Knowledge Science and Engineering Laboratory



Expanded Exact Matching:

We obtained <u>multilingual aliases</u> for all reference answers from Wikipedia, greatly expanding the matching scope of the Gold list.

Fuzzy Matching:

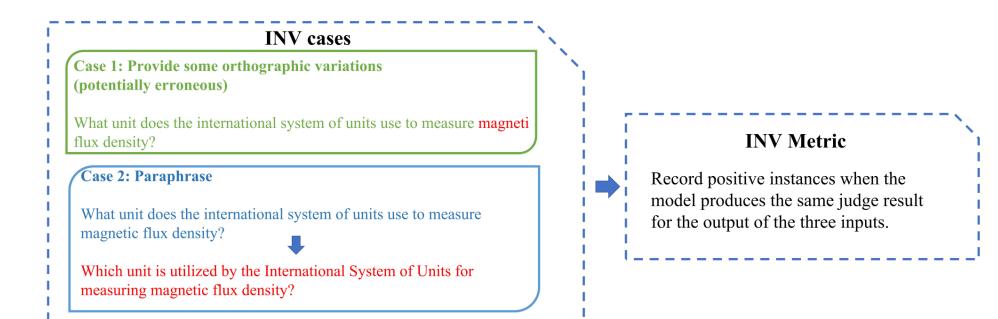
Fuzzy matching is performed based on <u>cosine similarity thresholds using</u> <u>m-BERT word vectors</u>.

Condition for fuzzy matching :

when EM fails and the answer type is not a <u>number</u>, <u>date</u>, <u>symbol code</u>, <u>or</u> <u>other sequences that are difficult to</u> <u>distinguish based on vector similarity</u>.

Original Test case:

What unit does the international system of units use to measure magnetic flux density?



Case 1: Altering the execution details of reasoning

What unit does the international system of units do not use to measure magnetic flux density? Generate the corresponding SPARQL query.

Case 2: Add prompt with answer type info

What unit does the international system of units use to measure magnetic flux density?, the type of answer is 'miscellaneous'.

Case 3: CoT (step-by-step):

Input1: What does 'unit' mean? Input2: What does 'international system' mean? Input3: What does 'measure magnetic' mean? Input4: ... Input5: What unit does the international system of units use to

measure magnetic flux density?

DIR Metric

When the model output matches the expected output of the cases, it is recorded as a positive instance.

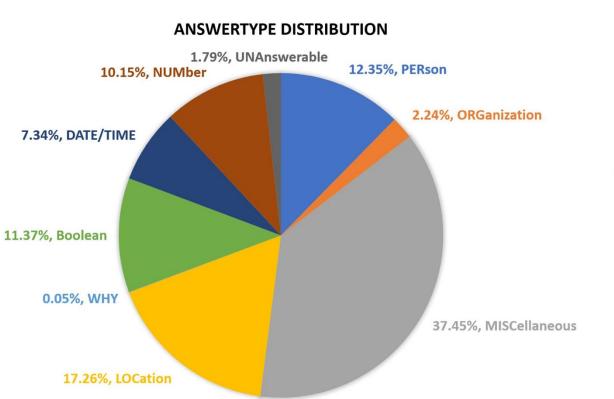
Case 1 expect [correct revise in SPARQL]: SPARQL with a new filter process.

Case 2 expect [matched answer type]: The type of answer generated by the model matches/corresponds to the answer type provided in the prompt.

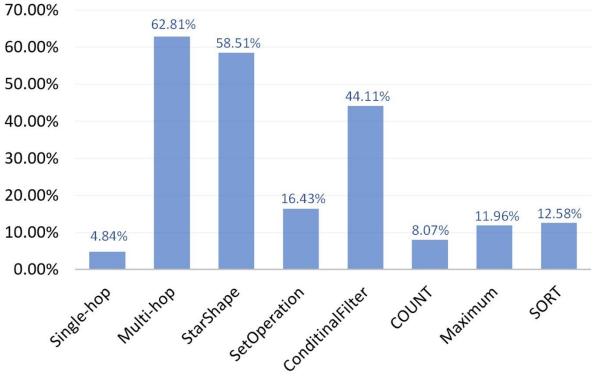
Case 3 expect [improved accuracy of answers]: Generating answers with higher accuracy.

Table 2. The Statistical of collected KB-based CQA datasets, "Col. Size" represents the size of the dataset we collected in our experiments. "Size" denotes the original size of the dataset.

-	Datasets	Size	Col. Size	Lang
(Cao, S. et. al, 2022)	KQApro	$117,\!970$	$106,\!173$	EN
(Dubey, M. et. al, 2019)	LC-quad2.0	$26,\!975$	$26,\!975$	\mathbf{EN}
(Yih, W.t. et. al, 2016)	WQSP	4737	4,700	\mathbf{EN}
(Talmor, A. et. al, 2018)	CWQ	$31,\!158$	$31,\!158$	\mathbf{EN}
(Gu, Y. et. al, 2021)	GrailQA	$64,\!331$	6,763	\mathbf{EN}
(Su, Y. et. al, 2016)	GraphQ	4,776	4,776	\mathbf{EN}
(Ngomo, N. et. al, 2018)	QALD-9	6,045	6,045	Mul
(Longpre, S. et. al, 2021)	MKQA	260,000	$6,\!144$	Mul
-	Total Collected		$194,\!782$	



REASONINGTYPE STATISTIC



GPT family:

- GPT-3 (text-davinci-001)
- GPT-3.5 v2 (text-davinci-002)
- GPT-3.5 v3 (text-davinci-003)
- ChatGPT (gpt3.5-turbo-0301)
- GPT-4

LLM not belongs to GPT family :

FLAN-T5 (Text-to-Text Transfer Transformer 11B)

Table 3. Overall results of the evaluation. We compare the exact match of ChatGPT with current SOTA traditional KBQA models (fine-tuned (FT) and zero-shot (ZS)), GPT family LLMs, and Non-GPT LLM. In GraphQ, QALD-9 and LC-quad2, the evaluation metric used is F1, while other datasets use Accuracy (Exact match).

Datasets	KQApro	LC-quad2	WQSP	CWQ	GrailQA	GraphQ	QALD-9	MKQA
	Acc	F1	Acc	Acc	Acc	F1	F1	Acc
SOTA(FT)	93.85 [29]	33.10 [31]	73.10 [15]	72.20 [15]	76.31 ‡	31.8 [13]	67.82 [32]	46.00 [22]
SOTA(ZS)	94.20 [25]	-	62.98 [50]	-	-	-	-	-
FLAN-T5	37.27	30.14	59.87	46.69	29.02	32.27	30.17	20.17
GPT-3	38.28	33.04	67.68	51.77	27.58	38.32	38.54	26.97
GPT-3.5v2	38.01	33.77	72.34	53.96	30.50	40.85	44.96	30.14
GPT-3.5v3	40.35	39.04	79.60	57.54	35.43	47.95	46.19	39.05
ChatGPT	47.93	42.76	83.70	64.02	46.77	53.10	45.71	44.30
GPT-4	57.20	54.95	90.45	71.00	51.40	63.20	57.20	59.20

Main results – Overall Testing

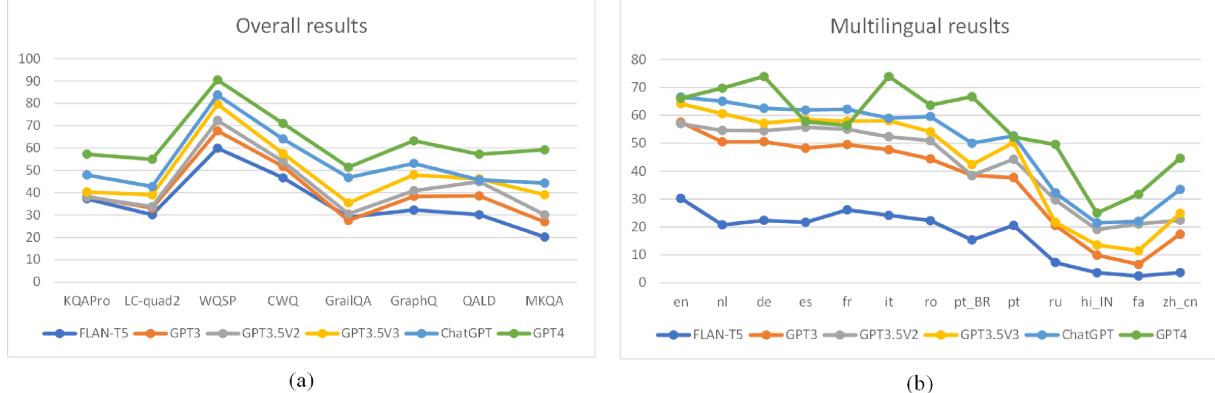
Languages	FLAN-T5	GPT-3	GPT-3.5v2	GPT-3.5v3	ChatGPT	GPT-4
en	30.29	57.53	56.99	64.16	66.49	66.09
\mathbf{nl}	20.75	50.47	54.58	60.56	65.05	69.72
${ m de}$	22.40	50.54	54.48	57.17	62.54	73.91
\mathbf{es}	21.68	48.22	55.70	58.50	61.87	57.69
${ m fr}$	26.16	49.46	55.02	57.89	62.19	62.00
\mathbf{it}	24.19	47.67	52.33	58.06	58.96	73.91
ro	22.28	44.38	50.94	54.12	59.55	63.41
pt_br	15.38	38.46	38.46	42.31	50.00	66.67
pt	20.58	37.70	44.26	50.27	52.64	52.25
\mathbf{ru}	7.29	20.58	29.69	21.68	32.24	49.58
hi_i	3.61	9.93	19.13	13.54	21.48	25.00
fa	2.45	6.59	21.09	11.49	22.03	31.71
zh_cn	3.65	17.45	22.40	24.87	33.46	44.62

 Table 4. Comparison of LLMs on multilingual test sets.

1. With each new iteration, the GPT family's multilingual question-answering capabilities are on the rise.

2. The improvement of GPT-4 indicates that the introduction of multimodal information significantly enhances performance for certain language types

Main results – Overall Testing



(a)

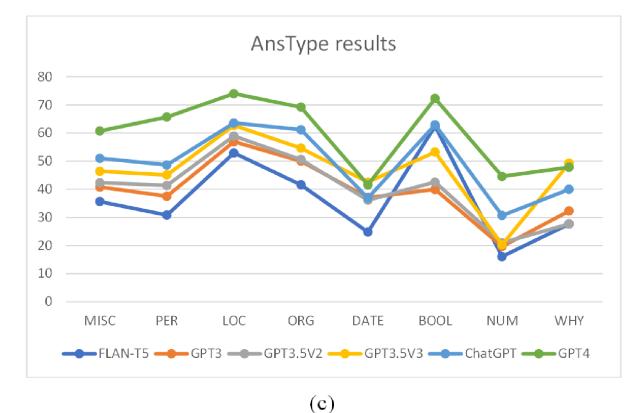
From a dataset perspective, the GPT models and FLAN-T5 share a high degree of similarity in their trendlines.

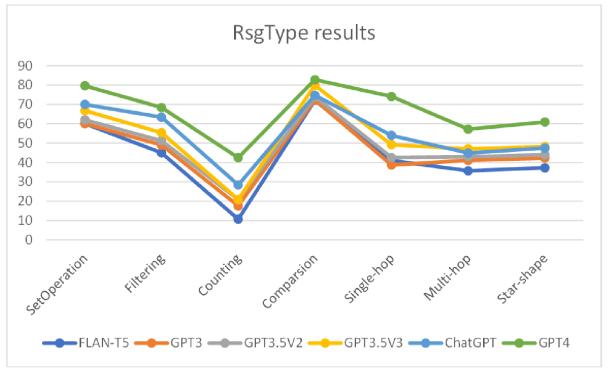
From a multilingual question-answering perspective, before the introduction of multimodal information (GPT-4), the GPT family also maintained a roughly similar trendline shape.

Table 5. Exact Match comparison based on Answer Types (AnsType) and ReasoningTypes (RsgType)

MF	FLAN-T5	GPT-3	GPT-3.5v2	GPT-3.5v3	ChatGPT	GPT-4
			AnsType			
MISC	35.67	40.79	42.35	46.42	51.02	60.73
PER	30.84	37.53	41.36	45.10	48.65	65.71
LOC	52.91	56.92	58.93	62.71	63.55	73.98
ORG	41.62	50.01	50.58	54.62	61.18	69.20
DATE	24.81	37.07	36.15	42.54	36.92	41.57
Boolean	62.43	39.96	42.56	53.23	62.92	72.28
NUM	16.08	19.66	21.01	20.31	30.70	44.59
WHY	27.69	32.31	27.69	49.23	40.00	47.83
UNÁ	-	-	-	-	-	-
			RsgType			
SetOperation	60.11	60.12	62.03	66.86	70.00	79.70
Filtering	45.01	49.06	51.24	55.43	63.40	68.40
Counting	10.68	17.56	20.83	20.83	28.41	42.50
Comparison	72.13	72.44	74.00	80.00	74.74	82.79
Single-hop	41.00	38.72	42.54	49.22	54.00	74.14
Multi-hop	35.68	41.09	42.98	47.06	44.88	57.20
Star-shape	37.23	42.28	43.96	48.17	47.43	60.91

Main results – Overall Testing





(d)

In terms of the types of answers to questions, there's a striking similarity in the strengths and weaknesses of past GPT models and FLAN-T5.

In terms of the types of reasoning involved in the questions, FLAN-T5 and the GPT family tend to excel or struggle with the same kinds of reasoning operations.

Table 6. MFT results of ChatGPT

	SetOperation	Filtering	Counting	Comparison	Single-hop	Multi-hop	Star-shape
Single Reasoning	60.22	51.39	24.16	31.48	44.07	48.27	50.75
Multiple Reasoning	70.00	63.40	28.41	74.74	54.00	44.88	47.43

Table 7. INV results of GPT family

LLM	CCC	CCW	CWC	CWW	WCC	WCW	WWC	WWW	Stability Rate
GPT-3	434	64	59	52	42	43	73	666	76.76
GPT-3.5 v2	495	44	65	42	43	30	58	656	80.30
GPT-3.5 v3	604	46	43	49	34	35	49	583	82.83
ChatGPT	588	49	72	68	52	27	32	545	79.06
GPT-4	798	0	0	65	54	0	0	516	91.70

MFT result

Multiple types of reasoning better than single type of reasoning

INV result

The consistency of the GPT model has steadily improved with each iteration, approaching the trend of traditional models.

Table 8. DIR results for RsgType, the score represents the percentage of expectedoutput produced by the LLMs.

	SetOperation	Filtering	Counting	Comparison	Overall
GPT-3.5 v3	45%	75%	65%	65%	62.5%
ChatGPT	75%	85%	$\mathbf{70\%}$	$\mathbf{65\%}$	73.75%
GPT-4	65%	90%	$\mathbf{70\%}$	60%	71.25%

DIR case 1

ChatGPT produce responses that aligned more closely with expectations for the DIR test case 1

CheckList results

	MISC	PER	LOC	ORG	DATE	Boolean	NUM	WHY
GPT-3	+1.43	0	+5.71	+4.29	+4.29	+15.71	+17.14	0
GPT-3.5 v2	-4.28	+2.85	+7.14	+14.28	+2.86	-8.57	+14.28	+12.13
GPT-3.5 v3	-12.86	+10.00	+18.57	-7.14	+4.71	+17.14	+22.85	+9.09
ChatGPT	+6.78	-3.64	-1.72	-5.35	-8.58	+4.28	+7.15	-3.03
GPT-4	-4.29	-2.86	+11.43	+5.71	0	+7.14	+4.29	-6.06

Table 9. DIR results for AnsType prompting

DIR case 2

Answer type prompting produces better results for weaker models.

Table 10. DIR results for CoT prompting

	MISC	PER	LOC	ORG	DATE	Boolean	NUM	WHY
GPT-3	-1.40	-2.00	-2.67	+2.73	-3.77	+3.36	+35.66	+6.06
GPT-3.5 v2	-0.35	-5.33	+1.78	-3.64	+0.76	-5.04	+32.95	0
GPT-3.5 v3	0	-2.00	-1.33	-1.82	-1.51	-2.10	+34.12	0
ChatGPT	-1.75	-4.66	+0.89	-3.63	-1.50	+3.36	+30.62	+6.06
GPT-4	-3.00	+11.11	-+2.22	+3.3	-2.71	0	+20.00	+2.62
	SetOperation	Filtering	Counting	Comparison	Multi-hop	Star-shape		
GPT-3	$\begin{array}{c} \text{SetOperation} \\ +10.79 \end{array}$	Filtering +10.43	$\frac{\text{Counting}}{+35.66}$	$\begin{array}{c} \text{Comparison} \\ +1.35 \end{array}$	Multi-hop -1.60	Star-shape -1.69]
GPT-3 GPT-3.5 v2		0	0	-		-]
	+10.79	+10.43	+35.66	+1.35	-1.60	-1.69		J
GPT-3.5 v2	$+10.79\\+4.86$	$+10.43 \\ +5.46$	$+35.66 \\ +38.54$	+1.35 -2.26	-1.60 -1.18	-1.69 -0.85]
GPT-3.5 v2 GPT-3.5 v3	$+10.79 \\ +4.86 \\ +6.34$	$+10.43 \\ +5.46 \\ +8.18$	$+35.66 \\ +38.54 \\ +38.99$	+1.35 -2.26 -1.13	-1.60 -1.18 -1.61	-1.69 -0.85 -1.26]

DIR case 3

Multi-step prompting can significantly enhance LLM's ability to tackle specific types of questions.

Conclusion

Q1: Can LLM replace traditional KB or become a new form of KB?

A1: The precondition is that we need to find LLM-specific SPARQL so that it can access the knowledge it contains correctly and reliably.

Q2: Can GPT models based on their own knowledge potentially replace traditional KBQA models?

A2: Not yet, although on some test sets, GPT-4's QA performance has exceeded traditional models. However, its lower consistency makes it not a reliable QA model.

Thank you !