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Background and research objective

Large language models like GPT family contain vast amounts of knowledge and 

support answering questions posed by users using their own included knowledge.

Question:  Can large language models replace the traditional KBQA model ?

Research objective: To evaluate the effectiveness of large language models, 

represented by the GPT family, when used as self-referential knowledge graphs in 

answering complex open-domain questions.
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Previous works and findings

Previous findings:

• ChatGPT tends to be a lazy reasoner and performs poorly in inductive reasoning 

tasks. (Bang et. al, A multitask, multilingual, multimodal evaluation of chatgpt on 

reasoning, hallucination, and interactivity, 2023)

• ChatGPT exhibits lower consistency in its question-answering results compared to 

traditional KBQA models.  (Omar et. al, Chatgpt versus traditional question 

answering for knowledge graphs: Current status and future directions towards 

knowledge graph chatbots, 2023)
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Previous works and findings 

(Liang et.al, Holistic Evaluation of Language Models, 2022)
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Previous works and findings 

(Ribeiro et. al, Beyond Accuracy: Behavioral Testing of NLP models with CheckList, 2020)

CheckList[4] Black-box testing

1. Minimum Functionality Test
     - Testing the model's various fundamental

2. INVariance Test
     - Making multiple input modifications while
keeping the main features unchanged, observe if the
model can maintain output consistency.

3. DIRectional Expectation Test
     - Introducing expected input modifications to
observe whether the model produces the anticipated
results.
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The Q&A evaluation framework
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The Q&A evaluation framework

Question Labeling:

The three labels "Answer-Type," “Reasoning-
Type," and "Language-Type" are set to uniformly
describe the characteristics of questions
originating from different KBQA data sets.

Answer Evaluation:

Answer Matching:
Exact matching (EM) + Fuzzy matching

Overall Testing: Assessment of QA Performance for
GPT LLM.

CheckList Testing: Testing the Consistency and
Robustness of GPT LLM as a Question-Answering
System
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Question Labeling – Feature tags

1. Source of feature labels：

      Answer Type：From answer types in existing
KBQA datasets.

Reasoning Type：From inference type labels in
existing KBQA datasets and keywords involved in
SPARQL queries.

Language Type ： From language labels in
existing multilingual KBQA datasets.
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Question Labeling – Auto labeling
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Answer Evaluation – Answer Matching

Expanded Exact Matching:

We obtained multilingual aliases for 
all reference answers from Wikipedia, 
greatly expanding the matching 
scope of the Gold list.

Fuzzy Matching:

Fuzzy matching is performed based 
on cosine similarity thresholds using 
m-BERT word vectors.

Condition for fuzzy matching : 

when EM fails and the answer type is 
not a number, date, symbol code, or 
other sequences that are difficult to 
distinguish based on vector similarity.
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Answer Evaluation – CheckList testing
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Answer Evaluation – CheckList testing
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Experiments and key findings
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Results and key findings – Datasets for testing

(Talmor, A. et. al, 2018)

(Ngomo, N. et. al, 2018)

(Yih, W.t. et. al, 2016)

(Cao, S. et. al, 2022)

(Gu, Y. et. al, 2021)

(Longpre, S. et. al, 2021)

(Su, Y. et. al, 2016)

(Dubey, M. et. al, 2019)
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Results and key findings - Datasets for testing
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GPT family：

GPT-3 (text-davinci-001)

GPT-3.5 v2 (text-davinci-002)

GPT-3.5 v3 (text-davinci-003)

ChatGPT (gpt3.5-turbo-0301)

GPT-4

LLM not belongs to GPT family : 

FLAN-T5 (Text-to-Text Transfer Transformer 11B)

Results and key findings – LLM for testing
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Main results – Overall Testing
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1. With each new iteration, the GPT family's
multilingual question-answering capabilities
are on the rise.

2. The improvement of GPT-4 indicates that
the introduction of multimodal information
significantly enhances performance for
certain language types

Main results – Overall Testing
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From a dataset perspective, the GPT models and FLAN-T5 
share a high degree of similarity in their trendlines.

From a multilingual question-answering perspective, before 
the introduction of multimodal information (GPT-4), the GPT 
family also maintained a roughly similar trendline shape.

Main results – Overall Testing
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Main results – Overall Testing
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In terms of the types of answers to questions, there's a 
striking similarity in the strengths and weaknesses of past 
GPT models and FLAN-T5.

In terms of the types of reasoning involved in the questions, 
FLAN-T5 and the GPT family tend to excel or struggle with the 
same kinds of reasoning operations.

Main results – Overall Testing
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CheckList results

MFT result
Multiple types of reasoning better than
single type of reasoning

INV result
The consistency of the GPT model has
steadily improved with each iteration,
approaching the trend of traditional
models.

DIR case 1
ChatGPT produce responses that aligned
more closely with expectations for the
DIR test case 1
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CheckList results

DIR case 2
Answer type prompting produces better
results for weaker models.

DIR case 3
Multi-step prompting can significantly enhance
LLM's ability to tackle specific types of
questions.
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Conclusion
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Conclusion

Q2: Can GPT models based on their own knowledge potentially replace 
traditional KBQA models?

A2: Not yet, although on some test sets, GPT-4’s QA performance has exceeded 
traditional models. However, its lower consistency makes it not a reliable QA 
model. 

Q1:  Can LLM replace traditional KB or become a new form of KB? 

A1: The precondition is that we need to find LLM-specific SPARQL so that it can 
access the knowledge it contains correctly and reliably.
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Thank you !
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